Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Hum Immunol ; 84(8): 393-400, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: covidwho-2278620

RESUMEN

The immunosuppressive non-classical human leukocyte antigen-G (HLA-G) can elicits pro-viral activities by down-modulating immune responses. We analysed soluble forms of HLA-G, IL-6 and IL-10 as well as on immune effector cell expression of HLA-G and its cognate ILT-2 receptor in peripheral blood obtained from hospitalised and convalescent COVID-19 patients. Compared with convalescents (N = 202), circulating soluble HLA-G levels (total and vesicular-bound molecules) were significantly increased in hospitalised patients (N = 93) irrespective of the disease severity. During COVID-19, IL-6 and IL-10 levels were also elevated. Regarding the immune checkpoint expression of HLA-G/ILT-2 on peripheral immune effector cells, the frequencies of membrane-bound HLA-G on CD3+ and CD14+ cells were almost identical in patients during and post COVID-19, while the frequency of ILT-2 receptor on CD3+ and CD14+ cells was increased during acute infection. A multi-parametric correlation analysis of soluble HLA-G forms with IL-6, IL-10, activation markers CD25 and CD154, HLA-G, and ILT-2 expression on immune cells revealed a strong positive correlation of soluble HLA-G forms with membrane-bound HLA-G molecules on CD3+/CD14+ cells only in convalescents. During COVID-19, only vesicular-bound HLA-G were positively correlated with the activation marker CD25 on T cells. Thus, our data suggest that the elevated levels of soluble HLA-G in COVID-19 are due to increased expression in organ tissues other than circulating immune effector cells. The concomitant increased expression of soluble HLA-G and ILT-2 receptor frequencies supports the concept that the immune checkpoint HLA-G/ILT-2 plays a role in the immune-pathogenesis of COVID-19.


Asunto(s)
COVID-19 , Antígenos HLA-G , Humanos , Antígenos HLA-G/metabolismo , Interleucina-10/metabolismo , Interleucina-6/metabolismo , COVID-19/metabolismo , Linfocitos T
2.
Placenta ; 132: 38-43, 2023 02.
Artículo en Inglés | MEDLINE | ID: covidwho-2165764

RESUMEN

INTRODUCTION: Recent studies reported a differential expression of both ACE2 and CD147 in pregnant women associated to SARS-CoV-2 placental infection. The aim of this study is to further investigate the placental SARS-CoV-2 infection and the potential effect on protein expression (ACE2, CD147, HLA-G and CD56). METHODS: The study was on three subgroups: i) 18 subjects positive for SARS-CoV-2 swab at delivery; ii) 9 subjects that had a positive SARS-CoV-2 swab during pregnancy but resulted negative at delivery; iii) 11 control subjects with physiological pregnancy and with no previous or concomitant SARS-CoV-2 swab positivity. None of the subjects were vaccinated for SARS-CoV-2 infection. The placenta samples were analyzed for SARS-CoV-2 NP (Nucleocapsid protein) positivity and the expression of ACE2, CD147, HLA-G and CD56. RESULTS: We observed a higher percentage of SARS-CoV-2 NP positive placenta samples in the group of SARS-CoV-2 PCR positive at delivery in comparison with SARS-CoV-2 PCR negative at delivery. The localization of SARS-CoV-2 NP positivity in placenta samples was mainly in syncytiotrophoblast (ST) of SARS-CoV-2 PCR positive at delivery group and in extra-villous trophoblast (EVT) of SARS-CoV-2 PCR negative at delivery group. CD147, HLA-G positivity was higher in ST of SARS-CoV-2 PCR positive at delivery group, while CD56-expressing immune cells were decreased in comparison with control subjects. DISCUSSION: We confirmed the ability of SARS-CoV-2 to infect placenta tissues. The simultaneous SARS-CoV-2 swab positivity at delivery and the positivity of the placenta tissue for SARS-CoV-2 NP seems to create an environment that modifies the expression of specific molecules, as CD147 and HLA-G. These data suggest a possible impact of SARS-CoV-2 infection during pregnancy, that might be worthy to be monitored also in vaccinated subjects.


Asunto(s)
COVID-19 , Complicaciones Infecciosas del Embarazo , Femenino , Humanos , Embarazo , Enzima Convertidora de Angiotensina 2/metabolismo , Antígenos HLA-G/metabolismo , Placenta/metabolismo , Complicaciones Infecciosas del Embarazo/metabolismo , SARS-CoV-2
3.
Biomolecules ; 12(2)2022 02 04.
Artículo en Inglés | MEDLINE | ID: covidwho-1674480

RESUMEN

Human Leukocyte Antigen-G (HLA-G), a polymorphic non-classical HLA (HLA-Ib) with immune-regulatory properties in cancers and infectious diseases, presents both membrane-bound and soluble (sHLA-G) isoforms. Polymorphism has implications in host responses to pathogen infections and in pathogenesis. Differential expression patterns of HLA-G/sHLA-G or its polymorphism seem to be related to different pathological conditions, potentially acting as a disease progression biomarker. Pathogen antigens might be involved in the regulation of both membrane-bound and sHLA-G levels and impact immune responses during co-infections. The upregulation of HLA-G in viral and bacterial infections induce tolerance to infection. Recently, sHLA-G was found useful to identify the prognosis of Coronavirus disease 2019 (COVID-19) among patients and it was observed that the high levels of sHLA-G are associated with worse prognosis. The use of pathogens, such as Plasmodium falciparum, as immune modulators for other infections could be extended for the modulation of membrane-bound HLA-G in COVID-19-infected tissues. Overall, such information might open new avenues concerning the effect of some pathogens such as parasites in decreasing the expression level of HLA-G to restrict pathogenesis in some infections or to influence the immune responses after vaccination among others.


Asunto(s)
COVID-19/inmunología , Antígenos HLA-G/inmunología , Antígenos HLA-G/metabolismo , Inmunomodulación , Enfermedades Parasitarias/inmunología , COVID-19/terapia , Humanos , Inmunoterapia , Enfermedades Parasitarias/terapia
4.
Hum Immunol ; 81(12): 697-701, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: covidwho-838428

RESUMEN

SARS-CoV2 might conduce to rapid respiratory complications challenging healthcare systems worldwide. Immunological mechanisms associated to SARS-CoV2 infection are complex and not yet clearly elucidated. Arguments are in favour of a well host-adapted virus. Here I draw a systemic immunological representation linking actual SARS-CoV2 infection literature that hopefully might guide healthcare decisions to treat COVID-19. I suggest HLA-G and HLA-E, non classical HLA class I molecules, in the core of COVID-19 complications. These molecules are powerful in immune tolerance and might inhibit/suppress immune cells functions during SARS-CoV2 infection promoting virus subversion. Dosing soluble forms of these molecules in COVID-19 patients' plasma might help the identification of critical cases. I recommend also developing new SARS-CoV2 therapies based on the use of HLA-G and HLA-E or their specific receptors antibodies in combination with FDA approved therapeutics to combat efficiently COVID-19.


Asunto(s)
COVID-19/epidemiología , COVID-19/inmunología , Antígenos HLA-G/inmunología , Antígenos de Histocompatibilidad Clase I/inmunología , SARS-CoV-2/fisiología , Antivirales/farmacología , Antivirales/uso terapéutico , COVID-19/virología , Antígenos HLA-G/metabolismo , Antígenos de Histocompatibilidad Clase I/metabolismo , Interacciones Huésped-Patógeno/efectos de los fármacos , Interacciones Huésped-Patógeno/inmunología , Humanos , Tolerancia Inmunológica , Inmunización Pasiva , Terapia Molecular Dirigida , Transducción de Señal/efectos de los fármacos , Internalización del Virus , Replicación Viral , Tratamiento Farmacológico de COVID-19
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA